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The phenomenon in question arises when a periodic progressive wave train with 
fundamental frequency w is formed on deep water-say by radiation from an 
oscillating padd leand  there are also present residual wave motions at  adjacent 
side-band frequencies w(  1 4 a), such as would be generated if the movement of the 
paddle suffered a slight modulation at  low frequency. In  consequence of coupling 
through the non-linear boundary conditions at the free surface, energy is then 
transferred from the primary motion to the side bands at a rate that, as will be 
shown herein, can increase exponentially as the interaction proceeds. The result 
is that the wave train becomes highly irregular far from its origin, even when the 
departures from periodicity are scarcely detectable at  the start. 

I n  this paper a theoretical investigation is made into the stability of periodic 
wave trains to small disturbances in the form of a pair of side-band modes, and 
Part 2 which will follow is an account of some experimental observations in 
accord with the present predictions. The main conclusion of the theory is that  
infinitesimal disturbances of the type considered will undergo unbounded 
magnification if 

0 < 6 < (J2)ka ,  

where k and a are the fundamental wave-number and amplitude of the perturbed 
wave train. The asymptotic rate of growth is a maximum for 6 = ka. 

1. Introduction 
The object of this paper is to establish analytically that progressive waves 

of finite amplitude on deep water (that is, Stokes waves) are unstable. This 
proposition implies that in practice, where perturbations from the ideal wave 
motion are inevitably present, a train of such waves will disintegrate if it  travels 
far enough. Experimental evidence of this remarkable property has been found 
by us, and our observations will be presented in Part 2 of this study (Benjamin 
& Feir 1967). 

The present findings are perhaps most striking when considered as an epilogue 
to the famous controversy about the existence of water waves of permanent form. 
The history of the controversy is summarized in Lamb’s (1932, p. 420) text-book, 

t On leave from the Division of Mechanical Engineering, National Research Council. 
Ottawa, Canada. 
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where the issue is explained to depend on the convergence of the power series in 
wave amplitude whose leading terms were first obtained by Stokes as an approxi- 
mate solution of the non-linear problem. For periodic waves on infinitely deep 
water, Levi-Civita (1925) proved these series to be convergent if the ratio of 
amplitude to wavelength is sufficiently small, and thus the existence of permanent 
waves satisfying the exact non-linear boundary conditions was definitely estab- 
lished. Soon afterwards Struik (1926) extended the proof to waves on water of 
finite depth. Among recent work on the subject, the greatest advances have been 
made by Krasovskii (1960,1961), who proved the existence of permanent periodic 
waves subject only to the restriction that their maximum slope is less than the 
limiting value of 30". For a long time no doubt has remained, therefore, that 
water waves of unchanging form are theoretically possible as states of perfect 
dynamic equilibrium. Until now, however, it  has apparently not been suspected 
that for waves on deep water the equilibrium so long in question is in fact un- 
stable. 

Although the detailed analysis of the instability is necessarily complicated, the 
essential factors can be simply explained as follows. Consider the various simple- 
harmonic modes present in a slightly disturbed wave motion. We have first, for 
the basic wave train, the fundamental component with amplitude a and argu- 
ment e = kx - ot, say, and harmonics with arguments 25,35, . . . , which all 
advance in the horizontal x-direction with the phase velocity c = w / k .  For the 
disturbance, we take a pair of progressive-wave modes which have ' side-band' 
frequencies and wave-numbers adjacent to w and k ,  so that their arguments may 
be expressed by 

where K and 6 are small fractions. The respective amplitudes are denoted by 
el, e2 and are assumed to be much smaller than a. Now, among the products of a 
non-linear interaction between these disturbance modes and the basic wave train, 
there will be components with arguments 

and with amplitudes proportional to a2e, and a2e2, respectively. Thus, if it happens 
that 

8 = y1+y2 --f const. 

as the non-linear processes develop in time, each mode will generate effects that 
become resonant with the other, Thereafter, if 8 $. 0, n-, each mode suffers a 
synchronous forcing action proportional to the amplitude of the other, so that 
the two can grow mutually at an exponential rate. 

The crucial task of the analysis is to show that, for given specifications a. k ,  w 
of the basic wave train, the property (3) is possible for some non-zero K and 6. 
This property would be impossible in the absence of the basic wave train, or if 
the amplitude a were too small for there to be significant non-linear coupling 

(3) 
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with the side-band modes, because then the net frequencies Q ~ , ~  and wave- 
numbers kl, of these modes would have to obey the dispersion relation 

given by linearized theory (Lamb 1932, $229). Letting k1,2 = k( 1 & K )  precisely, 
for instance, we see that the frequencies o( 1 f 8) appearing explicitly in (1) can- 
not both satisfy (4), and the discrepancy must be accomodated by allowing y1 
and y 2  to be slowly-varying functions of time. If we put S = $K, which means 
that SwlKk = i c  = $(g/k)* is the group velocity for an infinitesimal wave with 
wave-number k, then (4) is satisfied to a first approximation for small 6, even if 
y1 and y 2  are constant; but to a second approximation (4) requires that 

d%(dt = -us2. ( 5 )  

Thus the effect of dispersion, in so far as it may be independent of non-linear 
effects, is to detune the prospective resonance between second-harmonic com- 
ponents of the basic wave motion and the side-band modes. 

However, it  is already known from the work of Longuet-Higgins & Phillips 
(1962) and Benney (1962) that the presence of one train of waves on deep water 
will affect the phase velocity of another train. The change produced was shown 
to be of second order in the amplitude of the waves responsible for it; and so in 
the present instance we may expect that terms in a2 will be added to (5) when the 
non-linear interaction is analysed to the same order of approximation as in the 
previous work. The property (3) appears to be possible, therefore, if these par- 
ticular non-linear effects act so as to balance the effect of dispersion represented 
by ( 5 ) .  And it may be expected that S = O(ka) if disturbances of the kind in view 
are to manifest instability. 

Despite the ground in common with previous studies of water-wave inter- 
actions, the presentation of a new treatment from first principles is judged 
desirable. There are several essential results in the present theory that are not 
readily accessible from existing analyses: in particular, we need to find the actual 
asymptotic value of the phase function 0 in order to predict the ultimate rate of 
amplification of an unstable disturbance. In Part 2 this prediction will be shown 
to compare favourably with our experimental results, 

2. Analysis 
We consider two-dimensional irrotational motion in infinitely deep water, 

which is modelled as an inviscid fluid. The axis IL: is drawn horizontally and y 
vertically upwards, with y = 0 denoting the mean level of the free surface. The 
equation of the free surface is written 

y = r (x ,  t ) ,  (6) 

so that 7 denotes the elevation of the surface above its mean level. 
The velocity potential $(x, y, t )  satisfies 

(7) 
27-2 
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everywhere on and below the free surface; and, assuming there to be no motion 
at infinite depths, we have 

V$+O for y+-co. (8) 

The kinematical boundary condition at the free surface is 

D (7 - y) /Dt  = rt + rz[4z1,=, - [$,I,=, = 0; (9) 

and, surface tension being supposed absent, the condition of constant pressure 
on the free surface may be expressed 

g7 + [$J,=, + +[$: + $;I,=, = 0-  (10) 

Here it is understood that an arbitrary function of t may be added to 4 (Lamb 
1932, $$20, 227). 

The Stokes approximation to waves of permanent form 
The non-linear boundary-value problem defined by the preceding equations is 
known to have exact periodic solutions in the form 7 = H ( x  - ct), 4 = Q,(x - ct, y), 
where c is a constant phase velocity. As we recalled in $ 1, the existence of such 
solutions was proved by Levi-Civita (1925)) who demonstrated the convergence 
of the series expansions for 7, 0 and the parameter c whose leading terms com- 
prise the approximation first given by Stokes. At present we need to take the 
approximation only as far as the first terms representing the effects of finite 
wave amplitude a. 

The required result is (cf. Lamb, $250) 

7 = H = a C O S ~ +  *ka2 cos 2& (11) 

4 = Q, = wk-laekv sin 5, 
in which 5 = kx - wt, and 

0 2  = gk( 1 + k W ) .  

This describes, with sufficient accuracy if ka is very small, the steady wave motion 
whose stability is now to be examined. 

Perturbation equations 

The question of stability is approached in the usual way by deriving the equa- 
tions satisfied by a small perturbation and hence investigating its development 
in time. Accordingly we write 

4 = Q,+€$J, 7 = H+€r", (14) 

and aim to prove instability, if it  exists, by demonstrating the asymptotic 
properties of +j. 

Since ('7) is a linear equation, it follows that 

and 
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After substitution of (14) into the boundary conditions (9) and (lo), linearization 
in e gives 

?t +?r[@,ly=H +?[ - a,, + H, @.&=H + [- 4 g  + Hx5L1,=If = 0, 

gr? + R@, @xy + @, @yg + @lyIy=H + [$l + @.z $x + ay 4”,1,=H = 0. 

(17) 

(1 8 )  

These are the exact linearized perturbation equations in so far as @ and H 
represent the exact basic solution. After substitution of the approximate ex- 
pressions (11) and (12), however, it is consistent to simplify (17) and (18) by 
reducing the coefficients to approximations of the same order-namely, as far 
as terms in a2. At the same time, an analytical continuation of 6 over the neigh- 
bourhood of the free surface can be assumed, and so the various derivatives of 
4 at y = H can be evaluated in the form of Taylor series about y = 0. In  this way, 
(17) and (18) lead to 

qt - (&,),=, = a[kw sin I;? - w cos <+, + (COB I;$,, + k sin I;4x)y=0] 
+ &a2[2k2w sin 25v - kw( 1 + cos 2 5 ) f X  

+{Icsin2I;(2k$,+$,,) + kcos26$,,+&(1 +cos2~)$,,,},=,], (19) 

- +a2[kw2(1- cos 2 5 ) ~  + {w sin 3<(kq(, + $,,) 
gq + ($,),=, = a[wz cos I;? - (w C O S < $ ~  + w sin 59, + cos 5$,t),=o] 

+ (1 + cos 2 0  (k@4”, + w5Ly + +$&) + k cos 254”,t},=,l. (20) 
These forms of the boundary conditions enable us readily to develop the solution 
+, 6 to second order in powers of a. 

Assumed form of solution 
The character of unstable perturbations can be foreseen on the basis of the ideas 
explained in $1, and it would pointlessly disguise the main issue of this analysis 
to allow for a more general type of perturbation. The solution q, 4 is therefore 
assumed to consist of two side-band modes, together with the products of their 
interaction with the basic wave train, and certain simplifications permitted by 
this assumption are introduced. The symbol B has now served its purpose as an 
ordering parameter in the derivation of linearized equations, and no confusion 
should arise from its being used again, as in $ 1, for the amplitudes of the side- 
band modes. 

We accordingly take 
9 = ?I+&, (21) 

+i = ~ ~ ~ 0 ~ 5 ~ + f ~ a s i { A i ~ 0 ~ ( 5 + g i ) +  B ~ c o s ( ~ - & ) ) + O ( ~ ~ U ~ B ~ ) .  (22) 

where the two components have the following form, with i = 1 , 2  respectively: 

Here the arguments Ci are given by (l), and the coefficients Ai ,  Bi are understood 
to be O( 1). The implied terms that are O(k2a2ei) have arguments 2<+ ci and do 
not need to be considered in analysing the instability to the adopted order of 
approximation: they represent effects of the interaction with the basic wave 
train that are non-resonant and therefore passive. Terms with arguments 26- ci 
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play a crucial role, on the other hand; but, as will appear presently, they can be 
merged into the leading terms of the present expansions. 

It is assumed that the ei and yi are slowly-varying functions of time, such that 
their derivatives have the properties 

ii = O(wk2a2ei), y i  = O(wk2a2). (23) 

These orders of magnitude can be guessed from the considerations outlined in 
Q 1, and they will be confirmed by the final results of the analysis. The form of 6 
corresponding to (21) must include terms in ki and Yi, but, as before, terms also 
proportional to a2 but with arguments 2<+ <$ can be ignored. Hence the appro- 
priate solution of (15) satisfying (16) can be expressed as the sum 

6 = 61+62, 
in which 

(24) 

As already noted in Q 1, we put 
8 = 1 K  

2 (27) 

in order that ki and w; shouldisatisfy the dispersion relation (4) to a first approxi- 
mation for small 8. Recalling another point made in Q 1, we assume 

s = O(ka),  (28) 

and anticipate this will be confirmed by the final results. Hence, in keeping with 
the scheme of approximation already defined in powers of ka, coefficients depend- 
ing on 6 can be simplified in the ensuing work. The assumption (28) is by no 
means necessary to the completion of the analysis, but the gain in generality by 
not using it (i.e. the coverage of frequencies well outside the unstable range) is 
judged not to be worth the attendent complication of the results. Note that in 
consequence of these assumptions the boundary conditions (19) and (20) imply 
that 

Li = 1 + O(k2a2). (29) 

The coefficients Mi, Ni, Ci, Di are also to be regarded as O( 1). 

Evaluation of coeficients 

The boundary conditions (19) and (20) are to be satisfied over a continuous and 
unbounded range of x. Therefore, if all the terms in them are reduced to simple- 
harmonic components, each set of components a t  every different wave-number 
must satisfy these conditions independently. The next part of the analysis, lead- 
ing to differential equations for ei(t)  and yi(t),  proceeds on this well-known 
principle. 

The first task is to find the coefficients of the terms proportional to mi in (22) 
and (25). By the separation of components with arguments <A Ci in (19) and (20), 
these coefficients are gathered on the left-hand sides of the equations, while 
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terms of the required order of magnitude are given on the right-hand sides by 
substituting the ' zeroth ' approximation 

f j i  = eicosi& $i = ki1wieieh^iUsin& (Li= 1) 

and making reductions of the kind sinycos& = ${sin(c+&) +sin(c- <J}. 
Separating the components a t  wave-numbers k 4 ki, we thus obtain pairs of 
simultaneous equations for Ai, Ci and Bi, Di, solution of which gives 

if we neglect O(6). This approximation is justified since these constants only 
appear multiplied by k2a2 in our final results: the neglect of O(6) is therefore 
consistent with (28) and the extent of the approximation in powers of ka. 

The next step is to separate components at  the wave-numbers ki from the 
boundary conditions (19) and (20), the approximation being taken to O(wk2a2ei) 
and O(w2ku2ei), respectively. The terms just evaluated now contribute to the 
right-hand sides, since, for instance, the product sinCcos(C+ ci) yields the com- 
ponent - 4 sin&. And, as a point of great importance, note is taken of the 
relationships shown by (2) in 0 1. Thus, for instance, we must put 

sin2[cos~,,, = Qsin(25- cl,J + $~in(2[+<,,~) 
= 4 ~ i n ( C ~ , ~  + 0 )  + 4 sin(2<+ C1,2), 

ignoring the second component but recognizing that the first contributes at the 
other of the two wave-numbers. In  this way, after a lot of reduction, (19) leads 
to the pair of equations 

€1, 2 { 4 ,  2 (1 - Li) + ?1,2 ( 1  - Ml, 2)) sin<1,2 + 4 , 2  ( 1  - 4 , 2 )  COSC1,2 

= wk2a2($el, sin Cl, + Qe2, sin(<,, + S)}, (3  1)  

and (20) leads to the pair 

Furthermore, the boundary conditions must be satisfied separately by com- 
ponents at  the same wave-number but in quadrature. Hence each one of the 
equations (31) and (32) yields two simultaneous equations upon separation of 
the coefficients of singi and cosCi. The constants Li and Mi occur only in the 
combination w;Li+yiMi, and so they can be eliminated between only four 
equations. Therefore, since the Ni are the only other unknown constants, the 
eight equations given by (31) and (32) can be reduced to four equations with 
known parameters for the four functions ei and yi. 

Adding the coefficients of cos& in (31) and those of sin<% in (32), we obtain 

de,, z/dt = ( $wk2a2 sin 8)  e2, 1. (33) 
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The other components of (31) and (32) lead to 
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and this pair of equations can be added to give an equation for 0 = y1 + y 2 ;  thus 

We also have, substituting (26), (27) and then (13), 

= - w(k2a2+ 8 2 ) .  (36) 

The error in (36) is O(S4, k4a4, S2k2a2), being therefbre negligible in the present 
scheme of approximation. Hence (35) is reduced t o  

This equation should be compared with (5), which was given by ignoring the 
effect of the basic wave train on the side-band properties. 

Equations (33) and (37) express secular properties that the perturbed motion 
will have if the system is released (i.e. the water surface is kept at constant 
pressure) after an infinitesimal disturbance of the specified kind has been intro- 
duced. The stability or instability of the system to a disturbance of this kind can 
be decided, therefore, from the asymptotic behaviour of the ci determined by 
these equations. If, for some choice of finite initial values at  t = 0, the property 
lei] -+ co for t + co is forthcoming, then the system is proved to be unstable in the 
usual sense. The question of stability as thus answered is, of course, separate 
from the practical question of what happens in the case of instability when a 
disturbance grows so large that the condition ci 4 a assumed here is no longer 
satisfied. The range over which the properties predicted by the present theory are 
manifested in practice, and the final outcome of instability, are matters that will 
be dealt with in Part 2. 

Demonstration of instability 
An integral of the simultaneous equations (33) is 

el&)= E ~ , ~ ( O )  cosh 

Although 8 is as yet an unknown function oft, several important conclusions can 
be drawn immediately from this expression. First, in confirmation of the property 
suggested in 3 1, we see that both side-band amplitudes will undergo unbounded 
amplification if B-tconst. (+ 0, n) as t -fa. We also see that this behaviour can 
ensue even when one of the side-band components is absent initially: the missing 
component is subsequently generated by the interaction of the other component 
with the basic wave train, and the two amplitudes tend ultimately to be equalized 
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by the process of amplification. (Some experimental observations of this situa- 
tion, where only one component is present initially, will be described in Part 2.) 

No generality is lost by assuming henceforth that the initial value el(0) is 
positive, and that e,(O) is positive or zero. Since changing the sign of ei is equiva- 
lent to adding 7~ to yi, the case where the ei(0) have opposite signs is obviously 
covered by allowing 0(0) any value in (0, 277). And, in respect of the equations 
now under consideration, the case where the ei(0) are both negative is indistin- 
guishable from the specified case. Under the present assumption, (33) shows that 
the amplitudes grow steadily if 0 begins and remains in (0, n), but they diminish 
at first if B(0) lies in the open interval (n, 2n). 

We proceed to derive an explicit solution for el, first writing for convenience 

After multiplication by e1e2 sin 5, (37) then becomes 

But (33) gives 

Hence (40) is seen to be equivalent to 

and so 
d(e1e2cos0+ae:)/dT = 0, 

el e2 cos 0 + ae: = const. = p, say. (42) 

The equations (41) also show that 

e21-e; = const. = 2ap(l -v), say. 143) 

Both constants p and v are determined by the initial values of el, e2 and 5. 

variable el alone, we obtain 
Using (42) and (43) to express the right-hand side of (41) in terms of the 

(de:/dT)' = (1 - + 2a~pe:2, -p2. (44) 

Let this quadratic function of €21 be denoted by Q for short. Since el must be real, 
the solution €21 of (44) is restricted to the range of positive values over which 
Q > 0, and a positive root of Q represents an extremum of e:(T). The two roots 
of Q may be expressed by A 2 B, where 

Three cases may now be distinguished: 

The case of instability: - 1 < a < 1 

Only one root, A + B, is then positive, and any value of s: greater than this 
makes Q > 0, so that unbounded growth of e$ with increasing T is possible. 
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Q = (1 - a2),((e2, - A)’ - B’), 

we obtain from (44) upon integration 

And if the initial value of the expression on the right-hand side is denoted by 
(1 - a2)b ,  this result can be rearranged to give 

€2, = A + B cash{( 1 - a2)9 (T + 7)). (46) 

We reflect that the constants A ,  B and 7 in (46) are all determined by the 
initial values of el, c2 and 8. Also, referring to (4 l ) ,  we see that r will have the sign 
of sinO(0). If r < 0, the solution €2, will first decrease with increasing T, reach the 
minimum value A + B when T = - r ,  and thereafter increase steadily without 
bound. If r > 0, there will be steady growth from the start. Comparing (38), we 
may conclude from these results that 8 always remains in (0, n) if its initial value 
lies in this interval, but 8 generally leaves (n, 2n) if started there. 

For large T ,  the asymptotic behaviour of el according to (46) is 

el N exp{$( 1 - a2)fT). (47) 

From (38) or (43) it  follows that e2-fe1 concomitantly with (47). And it is readily 
seen that 8 -+ cos-I( - a )  in (0, n). 

An exception to the preceding conclusions must be allowed in the instance 
when ~ ~ ( 0 )  = e2(0) and e(0) = cos-l( -a).  Then bothp and wp vanish, 6’is constant 
by (42) and (43), and the solution of (44) is seen immediately to be 

el = el(0) exp{ & Q( 1 - a2)*T). (48) 

The positive sign applies when 0 < 8(0) < n; thus, as is obviously to be expected 
for these initial conditions, the properties achieved asymptotically in the general 
case are manifested from the start. The negative sign applies when n < 8( 0) < 2n, 
and thus we have one special set of initial conditions for which the disturbance 
will die away. This form of disturbance is incapable of practical realization, of 
course, being in effect an ‘anstable’ singular solution of the system of differential 
equations.? 

The case of marginal instability: a = - 1 

avp = -up  > 0 (cf. (50) below). The equation is then easily solved, giving 
The right-hand side of (44) reduces in this case to a linear function of e2,, with 

62, = - &I(( l / w 2 )  + (T + 7)”. (49) 

t A familiar interpretation of the two exceptional solutions (48) can be made if the 
system of differential equations, (33) and (37), is reduced to a pair of equations in the two 
dependent variables E = eJez and 8. The values E = 1, 8 = cos-l(- a) then define two 
singular points of the system: the f is t ,  with 8 in (0, n), is a ‘stable node’ towards which 
all neighbouring solutions converge as T -+ co, whereas the second, with 8 in (n, 2n),  is 
an ‘unstable node’ (cf. Stoker 1950, p. 44). 
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Hence we have that el - T asymptotically for large T, and this unbounded 
linear growth must be classed as an instability. 

The case of stability: a -= - 1 

The quadratic function Q then has two positive roots, and the solution c: of 
(44) must range between them. It is not obvious from the original definitions of 
p and v that the coefficients of Q have the properties 

vp < 0, 1 -a2+a2v2 2 0, (50) 
which, in addition to a < - 1, are necessary for positive real roots; but the fact 
that (44) is satisfied by the arbitrary initial values of e: and &:/dT is enough to 
establish these properties. Thus we have that A > B > 0, and by putting 
(1 - a2)* = i(a2 - l)* in the previous solution (46) we obtain for the present case 

e: = A+Bcos{(a2- ~)*(T+T)}.  (51) 

This shows, as expected, that e: varies periodically between the finite extrema 
A rf: B, and hence (43) shows that ei also remains bounded. The system is there- 
fore stable to disturbances as now specified. 

For the particular choice of initial values 

O(0) = 0, E2(0) = {-a If: (a2- 1)6}e1(0), (52 )  

it  is found that the equality included in the second member of (50) holds, so that 
B = 0. Then all three variables remain constant for all T. These two quiescent 
solutions may be described as the singular points of the system of differential 
equations in the case a < - 1, being of the type commonly termed centres (cf. 
Stoker 1950, pp. 38, 44). 

3. Discussion 
In 5 3, the stability of Stokes wave trains on infinitely deep inviscid liquid has 

been investigated by means of a linearized perturbation analysis. The condition 
of instability-that is, the condition under which the amplitudes of the side- 
band wave modes composing the disturbance appear to undergo indefinitely 
great magnification-was established as - 1 < a < 1,  which means, according 
to the definition of a in (39), 

In  principle, therefore, all wave trains of the type specified are unstable, since 
in accordance with the assumptions of the analysis a choice of 6 satisfying (53)  
can be made for every finite value of ka, however small. But an obvious reserva- 
tion must be made regarding the practical application of the theory: since viscous 
damping rates are approximately independent of wave amplitude, the effect of 
dissipation can be expected to suppress the instability if ka is sufficiently small. 
The practical aspects are to be taken up in Part 2,  and for now it will suffice to 
note that (53) has been confirmed very closely as the natural condition of in- 
stability for water waves with ka = O(10-l) and wavelengths about 1 ft. or 
greater. 

0 < 6 Q (42)ka.  (53 )  
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Another result with especial interest, having been checked experimentally, is 
the asymptotic growth of the side-band amplitudes. Prom ( 4 7 ) ,  after the defini- 
tions of T and a have been substituted, we have 

ei w exp {$S(2k2a2-- 62)twt) (54) 

if 0 < 6 < ( 4 2 ) k a .  For a given ka, the exponent in (54) is a maximum at S = h; 
that is, the optimum frequency deviation w' - w of the side bands is a fraction 
I /  J2  of the cut-off value beyond which no amplification occurs. Thus for a 

(mi - o)/kao 

FIGURE 1. The asymptotic growth rate of the side-band amplitudes as a function of frequency. 

specific Stokes wave there is a disturbance that is most unstable, comprising 
a pair of side-band modes with frequencies wi = w (  1 2 ka) and wave-numbers 
ki = k ( l  & 2ka) [see ( 2 6 )  and ( 2 7 ) ] .  This disturbance will emerge distinctly by 
selective amplification if the instability develops from a sufficiently low level of 
random background noise. To emphasize the present facts, particularly the 
existence of optimum and cut-off frequencies, the logarithmic growth rate given 
by (54) is plotted as a function of w; in figure 1. 

When the side-band amplitudes become approximately equal, as they always 
do after sufficient amplification, the assumed form of disturbance is equivalent 
to a uniform, forward-travelling modulation of the primary wave train. To 
demonstrate this point, let E denote the absolute value of the displacement 
amplitude for each side-band component (i.e. E = ~ e %  according to the strict 
meanings of e and ei as introduced in 9 2 ) ,  and consider the sum of the leading 
terms of the primary displacement H and perturbation -4j. Thus, taking account 
of ( 1  I ) ,  (21 )  and ( 2 2 ) ,  we express the second of ( 1 4 )  in the approximate form 

7 = a cos 5-t ~ ( C O S  & + cos c2) 
= a cos (kx - wt )  + 26 cos ( ~ k x  - Jut) cos (kx - wt - $0) 
= {a + 26 cos 40 cos ( ~ k x  - 6wt))  cos (kx - ot) 

+ 2E sin 40 cos ( ~ k x  - Swt) sin (kx - wt) .  ( 5 5 )  
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Here the terms in E represent a gradual modulation, at wave-number ~k < k, of 
the fundamental a cos (kx - wt)  : the first term, proportional to cos $0, describes 
an amplitude modulation; and the second, in which the rapidly-varying factor 
is in quadrature with the fundamental, describes a phase modulation. The 
moduiation envelope advances at the group velocity cg = S w / ~ l c  = +c. Note that 
the type of modulation, amplitude or phase, changes from one extreme to the 
other as 6 is varied through the unstable range given by (53). For, recalling that 
the asymptotic value of 8 is cos-l( -a) in (0,n-), we deduce that as 6 is raised 
from near zero up to the cut-off value (1/2)ka, i 0  falls from near in- (mainly phase 
modulation) to zero (pure amplitude modulation). 

As is illustrated clearly by (55 ) ,  the assumed physical model of the perturbed 
wave train is spatially uniform and its features (e.g. the depth of the modulations 
in amplitude and phase) develop simultaneously everywhere, having been ex- 
pressed in the analysis as slowly-varying functions of t  alone. In  an alternative 
model, the non-linear processes are assumed to act for an unlimited time, but 
to originate from a certain position-say x = 0-and so to develop with distance 
x in the direction of propagation of the primary wave train. This is the situation 
depicted in the first paragraph of the summary beginning this paper, and it is the 
closest model for the experiments described in Part 2. By a well-known principle, 
the present results can be adapted simply to apply to this second state of affairs: 
we need only to replace t in (54) by xlc, = 2kx/w. (Various formal arguments are 
available to justify this step: for instance, see Gaster (1962).) Thus, for the 
spatial growth of side-band modes that are generated with fixed frequencies 
w ( 1  & 6) at  x = 0, we have 

ei N exp {6( 2k2a2 - P)*kx). (56) 

The condition of instability is (53) as before. 
The present theory has been extended to deal with waves on water of arbitrary 

depth h, and the details will be reported in another paper (Benjamin 1967). It is 
found that a Stokes wave train is unstable, in the manner described here, only 
if kh > 1.363. The crucial property (3) turns out to be impossible if kh < 1.363, 
and the consequent inability of the interaction between disturbance modes and 
basic wave train to become resonant is sufficient to ensure stability. This signi- 
ficant division of the range of kh has also been discovered by Whitham (1966) in 
applying his non-linear theory of wave dispersion to Stokes waves. He showed 
that equations governing extremely gradual-but not necessarily small- 
variations in wave properties are of elliptic type if kh > 1.363, but are hyperbolic 
if kh < 1.363. Some comments on the connexion between Whitham’s theory and 
the present stability theory are included in his paper (see also Benjamin 1967). 
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